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ABSTRACT  
This paper deals with the flexural vibrations of poroelastic solid cylinders. The frequency equations for pervious 

surface are obtained in the frame work of Biot’s theory of wave propagation in poroelastic solids. The gauge 

invariance property is used to eliminate one arbitrary constant in solution of the problem. This would lower the 

number of boundary conditions actually required. For illustration purpose, three materials are considered and 

then discussed. In either case, phase velocity is computed against wave number  

 

I. INTRODUCTION 
We know from daily experience that many 

manmade structures approximately cylindrical in 

shape and made of poroelastic material. Even in 

man’s own body some osseous tissue, approximately 

cylindrical in shape and are elastic in nature. Excess 

stresses and pressure in the above elements result in 

vibrations.  

 Kumar (1964) studied the propagation of axially 

symmetric waves in a finite elastic cylinder.  Flexural 

vibrations of finite circular elastic cylinder is studied 

by Biswas et al. (1976). Mott (1972 ) investigated 

elastic waveguide propagation in an infinite isotropic 

solid cylinder that is subjected to a static axial stress 

and strain. Employing Biot’s theory (Biot, 1956), 

Tajuddin and Sarma (1978, 1980) studied the 

torsional vibrations of finite hollow poroelastic 

cylinders. Reddy and Tajuddin (2000) investigated 

plane-strain vibrations of thick-walled hollow 

poroelastic cylinders and discussed extreme limiting 

cases of plate and solid cylinder. Tajuddin and Shah 

(2006, 2007) studied the circumferential waves and 

torsional vibrations of infinite hollow poroelastic 

cylinders in presence of dissipation.  

The analysis of the flexural vibrations in cylindrical 

structures has wide applications in the field of 

acoustics structural design and Biomechanics, where 

the knowledge of natural mode of the vibration is of 

paramount importance. There should be stress-free 

conditions in order to obtain natural modes 

theoretically. However, to the best of author’s 

knowledge, flexural vibrations of poroelastic cylinder 

that in presence of static stress are not investigated. 

Therefore, in this paper, an attempt is made to 

investigate the same in the frame work of Biot’s 

theory. Frequency equations are obtained for pervious 

boundary.  Phase velocity is computed against wave 

number in the case of pervious surface and results are 

presented graphically. 

 

 

This paper is organized as follows. In section 2, basic 

governing equations, formulation, and solution of the 

problem are given. In section 3, frequency equations 

are derived for pervious surface. Numerical results 

are presented in section 4. Finally, conclusions are 

given in section 5. 

 

II. Governing equations and solution of the 

problem 

Let ),,( zr  be,cylindrical,polar coordinates. 

Consider a poroelastic solid cylinder of radius 

.a  The equations of motion of a homogeneous, 

isotropic poroelastic solid (Biot, 1956) in 

presence of dissipation )(b  are  

),(

)(

),()(

)(

22122

2

12112

2

2
































Uu
t

b

Uu
t

ReQ

Uu
t

bUu
t

QeNAuN







                                                                                                                                                

(2.1) 

Where 
2  is Laplace operator, ),,( wvuu



 and 

),,( WVUU


are solid and liquid displacements, 

e and   are the dilatations of solid and liquid, 

respectively; RQNA ,,,  are all poroelastic 

constants; ij  are mass coefficients. The relevant 

solid stresses ij  and liquid pressure s  are  
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(2.2) 

In the Eq. (2.2),  ij  is the well-known Kronecker 

delta function. Poroelastic constants of cylinder-I and 

cylinder-II are denoted by RQNP ,,,  

and
 RQNP ,,, , respectively. We introduce the 

displacement potentials ’s and ’s which are 

functions of ,r  and t  as follows: 
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(2.3) 
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(2.4) 

In the Eq. (2.4), k  is wave number,  is frequency, i  is 

complex unity, and t  is time. Then the equations of motion 

(Biot, 1956) in terms of displacement potential functions 

are
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(2.5)Where dot over a quantity represents differentiation 

with respect to time t  and .2NAP    Eq. (2.5)    with 

the help of (2.4) are reduced to 
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The general solutions of the equations (2.6) can be 

obtained in terms of the Bessel function of first 

kind nJ . The Eq. (2.6) after a long calculation 

yield:
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The gauge invariance property (Gazis, 1959) is used 

to eliminate one integration constant from the Eq. 

(2.8). Accordingly, any one of the potential functions 

3,21 , ggg  can be set equal to zero without loss of 

generality of the solution. Setting 02 g , we can 

obtai                                 

 .1ggg r       (2.9)                                                                                                                                                                                                                                              
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Substituting (2.4) in (2.3), the displacements of solid 

are
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Substituting (2.9) in (2.10), the displacement 

components become 
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(2.11)       For flexural vibrations, solid displacement 

components of cylinder can readily be evaluated from 

the Eq. (2.11) are given 

by

.
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(2.12) 

In the Eq. (2.12), 4321 ,,, CCCC are all arbitrary 

constants and  
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In the Eq. (2.14),   21 ,VV  and 3V  are dilatational 

wave velocities of first and second kind, and shear 

wave velocity, respectively (Biot 1956). It is shown 

in the paper (Mott, 1972) that effective shear stress 

component 'zr
   in view of static axial stress   is 

given by                                                       

z

u
Tzrzr 


 330'           (2.15)             

Where 330T  is the applied static axial stress.   By 

substituting the displacements in the stress – 

displacement relations given by the Eq (2.2), the 

relevant stresses and liquid pressure are obtained they 

are,  
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In the equations (2.16)  
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 In the Eq. (2.17),     
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III. Boundary conditions and frequency equation 

The boundary conditions for the stress-free surface at  

ar   in the case of pervious surface are 

0)(  srr , 

0 z , 

0' zr
  
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The Eq. (3.1) results in a system of four equations in 

four arbitrary constants   4321 ,,, CCCC  .  A 

nontrivial solution can be obtained if the determinant 

of the coefficients vanishes. Accordingly, we obtain 

the frequency equation for a pervious surface and 

is,given,under:                                                            

4,3,2,1,,0)(  jiaM ij
,                                  

(3.2) 

Where ijM s are defined in the Esq. (2.16) 

IV. Numerical results 

Due to dissipative nature of the medium, 

waves are attenuated. Attenuation presents some 

difficulty in the definition of phase velocity; 

therefore, the case  0b  is considered for the 

numerical results. Even if we make b  zero, problem 

would be poroelastic in nature as the coefficients 

RQNA ,,,  would not vanish, only thing is mass 

coefficients ijK  would be real and will be 

reduced to ij . The following non-dimensional 

parameters are introduced to investigate the 

frequency equation (3.2): 
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In the Eq. (4.1),  d  is the phase velocity , m  is the 

non-dimensional phase velocity, 0R  is the aspect 

ratio, 1R is the ratio of lengths of the cylinders, 

RQPH  2   and  .2 221211    

Also, 0c  and 0V  are reference velocities and are 

given by ,2

0


N
c 



H
V 2

0 . Employing these non-

dimensional quantities we obtain the implicit relation 

between non dimensional phase velocity m  and non 

dimensional wave number ka  for fixed .330

H

T
 Non 

dimensional phase velocity is computed against non 

dimensional  wave number in the case  of three 

poroelastic materials  given by Biot (1956) and the 

values are represented graphically in the Fig.1.  The 

values of parameters of these materials are given in 

the Table 1. In material-II and material-III, mass 
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coupling parameter is present. From the figure it is 

clear that phase velocity is higher for material-I than 

that of material-II and material III . This is due to 

presence of mass coupling parameter present in 

material-II and material-III. 
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VI. CONCLUSION 

Flexural vibrations in isotropic poroelastic solid 

cylinder are investigated in the framework of Biot’s 

theory in the case of pervious surface. Phase velocity 

against wave number is investigated for three 

different poroelastic materials. This kind of analysis 

can be made for any poroelastic solid cylinder if the 

values of all constants of pertinent materials are 

available. 
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