Srisailam Alety Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 4( Version 4), April 2014, pp.68-72

RESEARCH ARTICLE OPEN ACCESS

Vibrations Of Poroelastic Solid Cylinder In The Presence Of
Static Stresses In The Pervious Surfaces

www.ijera.com

Srisailam Alety(*)
*(Department of Mathematics Kakatiya UniversityWarangal-506009, A.P., INDIA)

ABSTRACT

This paper deals with the flexural vibrations of poroelastic solid cylinders. The frequency equations for pervious
surface are obtained in the frame work of Biot’s theory of wave propagation in poroelastic solids. The gauge
invariance property is used to eliminate one arbitrary constant in solution of the problem. This would lower the
number of boundary conditions actually required. For illustration purpose, three materials are considered and

then discussed. In either case, phase velocity is computed against wave number

I. INTRODUCTION

We know from daily experience that many
manmade structures approximately cylindrical in
shape and made of poroelastic material. Even in
man’s own body some osseous tissue, approximately
cylindrical in shape and are elastic in nature. Excess
stresses and pressure in the above elements result in
vibrations.
Kumar (1964) studied the propagation of axially
symmetric waves in a finite elastic cylinder. Flexural
vibrations of finite circular elastic cylinder is studied
by Biswas et al. (1976). Mott (1972 ) investigated
elastic waveguide propagation in an infinite isotropic
solid cylinder that is subjected to a static axial stress
and strain. Employing Biot’s theory (Biot, 1956),
Tajuddin and Sarma (1978, 1980) studied the
torsional vibrations of finite hollow poroelastic
cylinders. Reddy and Tajuddin (2000) investigated
plane-strain  vibrations of thick-walled hollow
poroelastic cylinders and discussed extreme limiting
cases of plate and solid cylinder. Tajuddin and Shah
(2006, 2007) studied the circumferential waves and
torsional vibrations of infinite hollow poroelastic
cylinders in presence of dissipation.
The analysis of the flexural vibrations in cylindrical
structures has wide applications in the field of
acoustics structural design and Biomechanics, where
the knowledge of natural mode of the vibration is of
paramount importance. There should be stress-free
conditions in order to obtain natural modes
theoretically. However, to the best of author’s
knowledge, flexural vibrations of poroelastic cylinder
that in presence of static stress are not investigated.
Therefore, in this paper, an attempt is made to
investigate the same in the frame work of Biot’s
theory. Frequency equations are obtained for pervious
boundary. Phase velocity is computed against wave
number in the case of pervious surface and results are
presented graphically.

This paper is organized as follows. In section 2, basic
governing equations, formulation, and solution of the
problem are given. In section 3, frequency equations
are derived for pervious surface. Numerical results
are presented in section 4. Finally, conclusions are
given in section 5.

Il.  Governing equations and solution of the
problem

Let(r, @,z) be,cylindrical,polar  coordinates.

Consider a poroelastic solid cylinder of radius

a. The equations of motion of a homogeneous,

isotropic poroelastic solid (Biot, 1956) in

presence of dissipation (b) are

NV2 U+ (A+N)Ve+QVs =
2

0 - - o~ -
at_z(P11u+p12U)+bE(u_U),

2

a - -
Qve+ Rvg:at_z(plz U+ p,U) -

6 -> -
b—(u-U),

o (u-U)
2.1)

N
Where V2 is Laplace operator, U(U,V,W) and

N
UU,V,W)are solid and liquid displacements,
€and ¢ are the dilatations of solid and liquid,
A,N,Q,R are all

constants; p; are mass coefficients. The relevant

respectively; poroelastic

solid stresses o; and liquid pressure S are
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oy =2Ne; +(Ae+Qs)s;  (,i=123), 0=(p,h, +p,H,)—b(h, —H,),

S:Qe+R8. Oz(p12ﬁz+p22Hz)_b(hz_Hz)'

(2.2) (2.5)Where dot over a quantity represents differentiation

with respect to time t and P = A+ 2N. Eqg. (2.5) with

In the Eq. (2.2), 5"- is the well-known Kronecke{he help of (2.4) are reduced to

delta function. Poroelastic constants of cylinder-I and

cylinder-1l are  denoted by P,N,Q,R PA¢ .+ QAP ,= —a)Z(K11 f, +K,f,)
and P*,N",Q",R", respectively. We introduce the QA+ RA ,=—* (K, f, + Ky, 1)),

displacement potentials@’s andi/ ’s which are N(Ag _&+295)__w2(K 0 +K.G.)
- 11 12 )
functions of 1, and t as follows: Tz 2 r r

29,
N(Aga_%"‘ r92 ):_a)z(Kngo"'KlzGe):

Lo aen, b, 104 an, o,

o roe oz roe oz or N(A93)=—w2(K1193+Klst)’
% ah, b, 1an,

oz or r roo’ (2.6)
u-9% 1M, oH, |, _19 oH, H, Where

or r 00 0z r 00 0z or

_0¢, OH, H, 10H, d2 1d n* ,

oz o r r oo A=—F+=-—-—-k%,
2.3) dre rdr r
ib
Let Ky =pn _g’

_ i(kz+at) _ i(kz+at) 2.7
¢,=f (r)cos@e™ ™, ¢,=f,(r) cosge™, ib ib @0
- - Kpo=pn+— Kyp=p,——

w, =(h,,h,,h,), w,=(H,H,H,), @ @

. i . ; The general solutions of the equations (2.6) can be
_ i(kz+at) _ i(kz+at)
h.=g,(r)sinde , H, =G, (r)singe dbtained in terms of the Bessel function of first

_ i(kz+ot) _ i(kz+ot)
hy, =g,(r)cosge™ W H, =G, (r) cosde™ " yi 4 .- The Eq. (2.6) after a long calculation
h, = g,(r) cos@e' ™™ H, =G,(r) cos@e'* ™ yig|:
$,=(C,J,(a,r)+C,J,(a,r) )coshe ™,

¢2: _(C1512J1(a1r) + C2522J1(6¥2 I’) ) COS@ei(kH‘m ,
In the Eq. (2.4), K is wave number, @ is frequency, i is g,(r) =C,J, (a,r),
complex unity, and t is time. Then the equations of motion . .
(Biot, 1956) in terms of displacement potential functions 291(r) =0r=0,= 2C4J2(a3l’),
e L o 29,(N) =9, +9, =2CJo(a,r). (28
PV?0,+QV?0,= (pnd 1+ prd,) +b(p,— ¢,)

(2.4)

The gauge invariance property (Gazis, 1959) is used

2 20 _ y SN h4 A to eliminate one integration constant from the Eq.
QVig.+ th ¢22_6(f,1012¢1+ P 2) =Bl ¢2) (2.8). Accordingly, any one of the potential functions
N(V?h, ——;——28—5) =(pyh, +p,H,)+b(h —H,), 9:,9, 9, can be set equal to zero without loss of

r r

h, 2 oh, .. . ) ) generality of the solution. Setting g, =0, we can
N(Vzha_r_z_r_gg):(pnha+p12Ha)+b(h9_Ha)a obtai
szhz z(pllﬁz+p12Hz)+b(hz _Hz)1 gr :_gg :g]-' (2'9)

0:(p12ﬁr +p22Hr)_b(hr _Hr)’
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Substituting (2.4) in (2.3), the displacements of solid

areU = (fl' +lg3 _ikga)cosaei(kﬁaﬁ),
r

= (—1 f, +ikg, —g,)sin ge'**
r

(kz+at)

. : 1
w:(lkf1+ge+gH—Fg )cos@e' (2.10)

Substituting (2.9) in (2.10), the displacement
components become

u=(f, += g3+|kgl)c059e (hzvat)

:(——f +ikg, — g)sin e’V

i(kz+aot)

w=(ikf, - g, +9, ——gl)cosee

(2.11) For flexural V|brat|ons, solid displacement
components of cylinder can readily be evaluated from
the Eq. (2.11) are given

by

Ul [Ay(r)cosd A,(r)cosd A,(r)cosd A, (r)cosd
V= Ay(r)sing Ay(r)sing  Ay(r)sing A, (r)sind
w| [A,(r)cosd A,(r)cosd Ag(r)cosd A, (r)cosd

(2.12)

1

gilksat)

3

O O O O
~

4

Inthe Eq. (2.12), C,;,C,,C;,C, are all arbitrary
constants and

Au(D) =23y (@n) —ad, (@),

Au(1) =23, @) -0, (),

A, (r) =ikJ, (a,r),

As() =23, (@),
Ay (r) = _Tl‘Jl(Oﬁr)f A, (r) = __rl‘Jl(azr)'

An(r) =3, + a3, (@),

Ay, (r) =ikJ, (ayr),

A (r) =ikdy(enr),  Ag,(r) =ikd,(a,r),

Au(r)=0, Ay (r) =—azd;(a,r),

Where

(2.13)

2

al :\C;)—Z—kz,

1=123. (2.19)

In the Eq. (2.14), V,,V, and V; are dilatational

wave velocities of first and second kind, and shear
wave velocity, respectively (Biot 1956). It is shown
in the paper (Mott, 1972) that effective shear stress

component o . in view of static axial stress is

given by

Uzr' =0y

ou
—Tas0 P (2.15)

Where T, is the applied static axial stress. By

substituting the displacements in the stress -
displacement relations given by the Eq (2.2), the
relevant stresses and liquid pressure are obtained they
are,

o, +S| [My(r)cosd M,(r)cosd M(r)cosd M, (r)cosd | C,

Oy | [My(r)sind My(r)sing My (r)sind My (r)sing | C, | ..
o, My (r)cosd My(r)cosd My(r)cosd M,(r)cosd | C,

S M, (r)cosd M, (r)cosd My(r)cosd M,,(r)cosd| C,

In the equations (2.16)

3a
M, (r) =2N[ea] I, (ayr) — rl J, (a,r)]+

(Q+R)S = (A+Q)a; +(Q+R)S; —
(A+Q)k*) I, (er),

M, (r) Is similar expression as M, (r) withe,,
o, replaced by, , 5,

My, (r) = 2N( SJ 2 (a3),

Maa() = 23, (er) ~ 2Nikez, 3, )

2a
M, (r) = Tl‘]z(alr)
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M, (r) Is similar as M, (r) with o, replaced,by

2a
a, My(r) :TS‘Jz(asr)_a;‘Js(asr),

M., (r) = —ika; J;(asr)

Ma(

Nk

. 1
1) =—1J;(a,1) - 2Nikar,J, (@) - Ty, 'k(? Ji(@r)-ad,(ar)

M, (r) Issimilaras M4, (r) with o, replaced by «,

2Nik

L1
M, (r) :T‘Jl(aBr) — T 'kF‘]l(O%r)

M.,

M4

simi

2 _
S =

Na
(r= N(asz _kz)‘]z(asr)_Ta‘]l(%r) + T30 szz(%r)
() =(R&} =Q)(ay +k*) Iy (1), M, (r) s
laras M, (r) withs,, e, replaced by s,, a,
M43(r) =0, M44(I’) =0,
(2.17)

In the Eq. (2.17),

1t
Rkll - Qk 22

(2.18)

Boundary conditions and frequency equation

The boundary conditions for the stress-free surface at
I' = a in the case of pervious surface are

(o, +5)=0,
O-ZH :O'

o .=0
zr

s=0, (3.1)

The Eq. (3.1) results in a system of four equations in
C,.,C,C,,C, . A

nontrivial solution can be obtained if the determinant
of the coefficients vanishes. Accordingly, we obtain
the frequency equation for a pervious surface and
is,given,under:

four arbitrary constants

((Rkn _lez) _Viiz(PR _Qz)), i=12.

\MU@A=Q i,j=1 234,
(3.2)

Where M jj s are defined in the Esq. (2.16)

V. Numerical results
Due to dissipative nature of the medium,

waves are attenuated. Attenuation presents some
difficulty in the definition of phase velocity;

therefore, the case b =0 is considered for the

numerical results. Even if we make b zero, problem
would be poroelastic in nature as the coefficients
AN, Q, R would not vanish, only thing is mass

coefficients K; would be real and will be
reduced to p; . The following non-dimensional

parameters are introduced to investigate the
frequency equation (3.2):

P Q R N
alzﬁ, a2=ﬁ, a3=ﬁ, a4=ﬁ,
d,=Pu g =Fe da—@,

P P P

2 2 2
R=[ ], gD, 2[R,
\'A V, V,

In the Eq. (4.1), d is the phase velocity , M is the
non-dimensional phase velocity, R, is the aspect

ratio, R,is the ratio of lengths of the cylinders,
H=P+2Q+R and p=p,+2p,+ p,y.
Also, C, and V, are reference velocities and are
N

. 2 2 H .
given by c; = —, V; =— . Employing these non-
dimensional quantities we obtain the implicit relation

between non dimensional phase velocity M and non

T330

dimensional wave number ka for fixed . Non

dimensional phase velocity is computed against non
dimensional wave number in the case of three
poroelastic materials given by Biot (1956) and the
values are represented graphically in the Fig.1. The
values of parameters of these materials are given in
the Table 1. In material-1l and material-111, mass
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coupling parameter is present. From the figure it is
clear that phase velocity is higher for material-1 than
that of material-1l and material 11l . This is due to
presence of mass coupling parameter present in
material-11 and material-I11.

V. FIGURES AND TABLES

TABLE-I
Para
mete iva v | 7
; a |a, |a; |a,|d|d, |[dyX|Yy]|Z
Ma
terial | 0.61 0.04 0.30 0.0 0. 0 0. 1. 0. 14.6
- 25 5 341 | 5 5 67 | 81 | 23
93 1 2
Ma 0.61 0.04 0.30 0.0 0. -0.15 | 0. 2. 0. 18.0
25 5 341 | 65 65 | 38 | 90 | 02
terial 93 8 9
-1l
Ma 0.84 0.06 0.02 0.0 0. - 0. 0. 4, 3.85
3 5 8 341 | 90 | 0.00 10 [ 99 | 76 | 1
terial 93 1 1 1 9 3
-1
10 +
£ 8 1 M’\
Z —
g 6
2 = material 1
o 4 -
& — material 2
=
(=% 2 4
material 3
4] T T |
0 1 2 3 4
wave number k1 values

Fig.1.Variation of non dimensional phase velocity

with  non dimensional wave number when
T330 =05
H

VI. CONCLUSION

Flexural vibrations in isotropic poroelastic solid
cylinder are investigated in the framework of Biot’s

theory in the case of pervious surface. Phase velocity
against wave number is investigated for three
different poroelastic materials. This kind of analysis
can be made for any poroelastic solid cylinder if the
values of all constants of pertinent materials are
available.
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